機器學習(machine learning)是人工智慧的另一層面領域,也是邁向人工智慧的途徑。
機器學習是以電腦系統依照自身的運作經驗,自動改善其功能的軟體技術,就是讓電腦具備學習能力,從不斷的運作及回傳結果來調整模式,而追求最佳的任務成果。
現今社會資料訊息爆炸,且資料處理日益複雜,使得手動作業與分析變得無法及時且需要耗費龐大成本,因此,此類技術有其開發需求,且現有技術日漸成熟,讓機器學習不在只是天馬行空的概念,而是可以深入您的生活,確切地幫助到我們,在可預期的未來,機器學習勢不可擋。
此類相關研究文獻,我們可透過ASME Digital Collection來找到甚麼資料呢?
查詢關鍵字: machine learning
共查獲800多篇文獻, 出自於Journal of Medical Devices, Journal of Dynamic Systems, Measurement, and Control, Journal of Computational and Nonlinear Dynamics..等, ASME Conference Proceedings也收錄不少:
Research-article May 01, 2015
A Machine Learning-Based Design Representation Method for Designing Heterogeneous Microstructures
Hongyi Xu; Ruoqian Liu; Alok Choudhary; Wei Chen
J. Mech. Des. 2015; 137(5):051403-051403-10.
Machine Learning Classification Models for More Effective Mine Safety Inspections
Jeremy M. Gernand
Proc. ASME. 46637; Volume 14: Emerging Technologies; Engineering Management, Safety, Ethics, Society, and Education; Materials: Genetics to Structures, V014T08A020.November 14, 2014
Engine Diagnostics in the Eyes of Machine Learning
Link C. Jaw; Yuh-Jye Lee
Proc. ASME. 45752; Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy, V006T06A029.June 16, 2014
欲知更多相關文章,請上asmedigitalcollection.asme.org
欲了解試用或是訂購,歡迎聯繫我們