Innovations Enabling Semiconductor Roadmap Chee Wee Liu (劉致為) cliu@ntu.edu.tw <u>http://www.nanosioe.ee.ntu.edu.tw</u> <u>High mobility</u>/High K/ <u>3D x3D</u> GDP similar to Philippine (1.2x) if semi dies

2017年全球半導體廠商營收前十大排名

Source: Gartner (January 2018)

2017	2016			2017 Market Share		2016-2017 Growth	
Rank	Rank	Vendor	2017 Revenue	(%)	2016 Revenue	(%)	
1	1 2 Samsung Electronics		61,215	14.6	40,104	52.6	
2	1	Intel	57,712	13.8	54,091	6.7	
3	4	SK Hynix	26,309	6.3	14,700	79.0	
4	6	Micron Technology	23,062	5.5	12,950	78.1	
5	3	Qualcomm	17,063	4.1	15,415	10.7	
6	5	Broadcom	15,490	3.7	13,223	17.1	
7	7	Texas Instruments	13,806	3.3	11,901	16.0	
8	8	Toshiba	12,813	3.1	9,918	29.2	
9	17	Western Digital	9,181	2.2	4,170	120.2	
10	9	NXP	8,651	2.1	9,306	-7.0	
		Others	174,418	41.6	157,736	10.6	
		Total Market	419,720	100.0	343,514	2 22	

*IC Insights 10/17 forecast **SEMI 12/17 forecast

*Covers only the Internet connection portion of systems.

The top eight transformative technologies for the global technology market in 2018, IHS Markt

report Ref: https://www.businesswire.com/news/home/20180104005040/en/IHS-Markit-Identifies-Top-Technology-Trends-2018

Strained Si starting from 90 nm node

Transistor Innovations Enable Technology Cadence

• Enabling technologies: high mobility, high-k/metal gate, 3D transistor

IMECVIEW OF TRANSISTOR ROADMAP

TSMC's Roadmap

https://www.eetimes.com/document.asp?doc_id=1333244&print=yes

- 7nm : 2018/5 in volume production
- ◆ 7nm+ : early 2019, using EUV lithography ramping
- ♦ 5nm :
 - To start risk production of a 5-nm node in the first half of 2019.
 - To use EUV on multiple layers and 5-nm nodes.
 - To start 5-nm production in 2020.
- ◆ 2nm and beyond :
 - Stacked nanowires or nanosheets
 - Germanium channel with record-low contact resistance
 - 2D back-end materials including molybdenum disulfide
 - To enlarge copper grains to reduce resistance in interconnects.
 - selective dielectric-on-dielectric deposition process to enable self-aligning of copper vias.

Silicon Crystal Structure (Ge, SiGe, GeSn)

- *Unit cell* of silicon crystal is cubic.
- Each Si atom has 4 nearest neighbors.
- Si sp3

Large I_{on} and small V_{dd}

•要馬兒好又要馬兒不吃草

$$I_{on} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{gs} - V_t)^2$$
Large lon \rightarrow high speed CV/I
large μ_n , $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} \rightarrow$ large ϵ_{ox} small
tox \rightarrow large tunneling current (big lg)
 $CV_{DD}^2 f \rightarrow$ small $V_{DD} \rightarrow$ small SS \rightarrow FinFET

*I*_{off} : small tunneling (many sources)

Power Saving : To Increase Mobility

• Channel: Strained Si => SiGe=> Ge ?

Reduce to Power (= $CV_{DD}^2 f$) in transistor level \rightarrow small V_{DD}

- $SS \ge 60 \text{ mV/decade for thermionic emission}$
- SS \leq 60 mV/decade \rightarrow NCFET, TFET

Moore's Law (scaled FETs)

- Intel co-founder Gorden Moore noticed in 1964
- Transistor density on a chip doubles per generation 2x/generation
- Amazingly still correct, likely to keep until 20xx

MORE Than MOORE: Sensor/MEMS, Analog, RF, ...

Strained Si at room temperature (90 nm)

- The tensile strain lowers $\Delta 2$ valleys with low in-plane effective mass.
- More electron in high mobility $\Delta 2$ valleys
- ~2x enhancement

High mobility strained Si

SiGe Graded Buffer Layers

Step graded buffer layer

 Dislocations confined in the compositionally graded buffer layer.

 Integral and fraction quantum Hall Effect can is observed in the 2DEG structure.

Record High 2DEG Mobility (2.4 M cm²/V s)

- SiGe/Ge has higher mobility than Si
- GeSn mobility is not known!

SiGe channel PFET using Si cap

Si cap for high K/metal gate3x mobility enhancement

C.Y. Peng APL 2007, ROC patent 2006

Strained Si_{0.75}Ge_{0.25} channel pFET

• A substantial improvement of 70–85 % with SiGe fins is noticed at high carrier density of 10¹³ cm⁻².

Under Embarge Unst Nov. 4th, 9.80pm PST **High-k Dielectric reduces leakage** substantially

- AM	THE OWNER OF STREET, ST
	High-k vs. Si
Benefits compa	red to current pr
Section 1	RIHHHH - 2011
Silicon su	bstrate Sil
	AND
1.2nm \$	SIO, 2
Gab	
112411471505FM2	

intel

Gate

.0nm High-k

41444561464

con substrate

ocess technologies

		High-k vs. SiO ₂	Benefit		
	Capacitance	60% greater	Much faster transistors		
	Gate dielectric leakage	> 100x reduction	Far cooler		

10.

3D Transistors to Reduce SS

- Current can NOT go through at Vgs=0V.
- SS approaches 60 mV/dec (70 mV in real devices)

ref: C.Hu, "Modern Semicon. Devices for ICs" 2010, Pearson

Variations of FinFET

- Tall FinFET has the advantage of providing a large W and therefore large I_{on} while occupying a small footprint.
- Short FinFET has the advantage of less challenging lithography and etching.
- Nanowire FinFET gives the gate even more control over the silicon wire by surrounding it.

Beyond FinFET: stacked GAA

-strain engineering: fully compressive strain for stacked GeSn channels -defect and dislocation: defect confinement at Ge/SOI interface -inter-channel uniformity: sacrificial layers design •

• Epi

• S/D:

-high doping

-low parasitic resistance

resistance are achieved.

Channel release

-etching selectivity: H₂O₂ etching -Inter-channel uniformity & line edge roughness: sacrificial layers etching with ultrasonic assist technique -effective mass & strain after channel release:

biaxial to uniaxial strain & microbridge effect

Low thermal budget gate stacks -low D_{it} of IL, high-k material, and low dispersion: TiN/ZrO₂/Al₂O₃+RTO with 400°C thermal budget

Device fabrication

Process flow CVD epitaxy on 200mm SOI Fin formation by E-beam patterning and anisotropic etching (pure Cl₂ or HBr)

- Channel release (H₂O₂(wet)) along <110>
- Gate dielectric and in-situ electrode formation (ALD @ 250°C)

Al₂O₃+RTO 400°C +ZrO₂ + *in-situ* TiN

Gate stack annealing (FGA 400°C 10min)

Gate metal pad (TiN), S/D contact formation by sputtering (Pt), and PMA at 400°C

Stacked 3 channels GeSn JL pGAAFETs with optimum S/D

- Parasitic resistance is reduced by optimum S/D.
- \Rightarrow I_{on}=1975µA/µm at V_{OV}=V_{DS}=-1V and I_{on}=554µA/µm at V_{OV}=V_{DS}=-0.5V with 3 channels.

- Fin and gate size variation can degrade device performance
- 3D NAND reliability depends on device dimension control along deep channels.

3 D NAND Flash

SGD: select gate at the drain end SGS: select gate at the source end

Source: Western Digital, DevelopEX 2017 p.33

Why 3-D IC

- $P = N_{I/O} \uparrow C \downarrow f \downarrow V_{DD}^2$ • Less power consumption
- Hetero-integration

 → More than Moore
 → Cost effective
- N_{I/O} ↑ + Vertical Interconnect

 → Higher bandwidth
 → Size reduction
 → Lower RC delay

Hybrid Memory Cube

High Bandwidth Memory

Source: SK Hynix

Copyright (c) 2013 Hiroshige Goto All rights reserved.

•<u>HBM</u> \rightarrow 2.5D, memory dies packaged TOGETHER with processor and connected through silicon interposer.

- Stacked DRAM dies, connected by TSVs
- Size reduction vs GDDR5

High Density Memory System with HBM on Si Interposer

Hetero-integration

• 3D-IC is the promising technology for heterogeneous integration such as RF, photonics, memories, and logics Heterogeneous Integration

DRAM on Application Processor

Source: TSMC

- Vertical interconnects in molding compound (TIV)
- Stacked DRAM dies on application processor (AP)
- No TSV, no additional substrate
 → Low cost

Emerging memory (source: IEEE Solid State circuit Mag. Col.8 no.43, 2016)

TABLE 1. DEVICE CHARACTERISTICS OF MAINSTREAM AND EMERGING MEMORY TECHNOLOGIES.

	MAINSTREAM MEMORIES				EMERGING MEMORIES		
	SRAM	DRAM	FLASH				
			NOR	NAND	STT-MRAM	PCRAM	RRAM
Cell area	>100 F ²	6 F ²	10 F ²	<4F ² (3D)	6~50F ²	4~30F ²	4~12F ²
Multibit	1	1	2	3	1	2	2
Voltage	<1 V	<1 V	>10 V	>10 V	<1.5 V	<3 V	<3 V
Read time	~1 ns	~10 ns	~50 ns	~10 µs	<10 ns	<10 ns	<10 ns
Write time	~1 ns	~10 ns	10 µs–1 ms	100 µs–1 ms	<10 ns	~50 ns	<10 ns
Retention	N/A	~64 ms	>10 y	>10 y	>10 y	>10 y	>10 y
Endurance	>1E16	>1E16	>1E5	>1E4	>1E15	>1E9	>1E6~1E12
Write energy (J/bit)	~fJ	~10fJ	~100pJ	~10fJ	~0.1pJ	~10pJ	~0.1 pJ

Notes: F: feature size of the lithography. The energy estimation is on the cell-level (not on the array-level). PCRAM and RRAM can achieve less than $4F^2$ through 3D integration. The numbers of this table are representative (not the best or the worst cases).

Phase change memory (PCM)

- Large change in resistance > 100X
- But high programming current (~0.1 mA)

IEDM Tutorial, 2017 Kolobov *et al*., Nature Materials, 2004 Lee *et al*., Nature Nano, 2007 Chen and Pop, TED, 2009

Samsung 8 Gb PCM 20 nm w/ integrated diode (IEDM, 2011)

- Metal-insulator-metal (MIM) geometry, "I" = e.g. HfO2
- The conducting filament is formed by oxygen vacancies or metal precipitates

- = (R_{AP}-R_P)/R_P x100% = 100%~200%
- Magnetic tunnel junctions (MTJ): Two ferromagnetic layers (CoFeB) sandwich a tunnel barrier (MgO).
- The spin polarized current can switch the magnetization of free layers by spin-transfer torque.

IEDM Short course, 2017 J. Chang et al., VLSI Symp. T2-2, 2017

- SRAM bit cell area scaling is enabled by
 - Innovations in process technology
 - > Design solutions of read and write assist techniques